If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+157x=2500
We move all terms to the left:
x^2+157x-(2500)=0
a = 1; b = 157; c = -2500;
Δ = b2-4ac
Δ = 1572-4·1·(-2500)
Δ = 34649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(157)-\sqrt{34649}}{2*1}=\frac{-157-\sqrt{34649}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(157)+\sqrt{34649}}{2*1}=\frac{-157+\sqrt{34649}}{2} $
| 7x(8x)=10 | | 19+(5x+1)=(9x-3)/2 | | -j=-4.76 | | 4d+2=d-8 | | 9-2x-6-13x=6 | | 19x-40-37+23=180 | | 2(3y-24)+9y=27 | | x2+7/3x+49/36=1/36 | | 7x-5-3x=7 | | (18x-9)-(5x+1)=19 | | 3(t+1)=-1/2-5t | | 24x-30=24x-3 | | 5=3*1+b | | 5y-4=57 | | 24x-30=23x-3 | | (2*9x-3)-(5x+1)=19 | | 3x+1=3x-21 | | 15=50-4x | | n^2+n=1482 | | 22-9x=23 | | 3/4(5x-3)-5x=1/4 | | (3x-9)^2=3 | | h-13/1=-2 | | 7(x-3)+10=2(3×-3) | | 5-1/2b=-3 | | 3/5(5x-3)-5x=1/4 | | 42=3x=15 | | 7/2x+4=1/2+1/2x | | 1/2(4x–10)+5=x–11 | | -3=f+3-7=-3 | | t^2-10t+12.25=0 | | 4(x–7)+2x=5(2x+4)–2 |